Comparing Fair Ranking Metrics

Amifa Raj People and Information Research Team(PIReT), Boise State University

Fair Ranking Metric Resources

- 1. Measuring Fairness in Ranked Output (Yang et. al.; SSDBM '17): PreF Δ
- 2. FA*IR: A Fair Top-k Ranking Algorithm (Zehlike et.al.; CIKM'17): FAIR
- 3. Equity of Attention: Amortizing Individual Fairness in Rankings (Biega et. al.; SIGIR'18): IAA
- 4. Fairness of Exposure in Ranking (Singh et.al.; KDD'18): DP, EUR, RUR
- 5. Quantifying the Impact of User Attention Fair Group Representation in Ranked List (Sapienzynski et. al.; WWW'19): AWRF
- 6. Fairness in Recommendation Ranking through Pairwise Comparisons (Beutal et.al.; SIGKDD'19): PAIR
- 7. Evaluating Stochastic Ranking with Expected Exposure (Diaz et.al.; CIKM'20): EEL, EED, EER
- 8. Pairwise Fairness for Ranking and Regression (Narasimhan et.al.; AAAI'20): PAIR

Several metrics to measure unfairness

Difficulty finding suitable metric(s)

Differences and similarities among metrics

Focus of the talk

1

Describe and compare exposure and rank-fairness metrics

2

Identify gaps between their original presentation and the practicalities of applying them to recommender systems

3

Sensitivity analysis to assess the impact of design choices

Fairness Position

Consumer

Provider

Group

S

Individual

7

Provider Fairness

Group Fairness

Factors we considered

- > no relevance information
- > no weighting model
- binary group membership

Prefix = 10

$PreF\Delta$ (Yang et. al)

- 10-item window
- prioritize the top order fairness

FAIR (Zehlike et. al)

- every prefix
- given minimum proportion determined by Binomial probabilities

AWRF (Sapienzynski et. al)

Expected cumulative exposure(

- non-binary group membership
- > no relevance information
- uses a population estimator to compare

Population estimator is the group distribution in entire ranked list (true demographics)

Demographic Parity (Singh et.al)

- logarithmic attention decay
- binary group membership

Expected-Exposure Disparity (Diaz et.al)

EED: Demographic Parity

- rbp & cascade attention decay
- > non-binary group membership

Exposure should be proportional to relevance

.

.

DIR (RUR)

(Singh et. al)

- > probabilistic ranking
- logarithmic attention decay
- > binary group membership

Pair (Beutal et. al; Narasimhan et.al.)

- \succ single ranking
- > uses relevance information
- non-Binary group membership
 - pairwise comparison

Relevance >= Relevance

InterACC:

Relevance >= Relevance

IntraACC:

Browsing Model (Weighting Strategy)

patience parameter

visiting probability exponentially decreases with position **RBP** visiting probability exponentially decreases with position **Geometric**

stopping probability

visiting probability depends on relevance of visited items **Cascade**

visiting probability logarithmically decreases with position **Logarithmic**

patience parameter stopping probability

Metric(s)	Goal	Weighting	Relevance	Binary	1
$PreF\Delta$	Each prefix representative of whole ranking	×	×	Dep on Δ	Cingle
AWRF	Weighted representation matches population	Geometric	×	×	List metric
FAIR	Each prefix matches target distribution	×	×	✓	
DP	Exposure equal across groups	Logarithmic	×	1	
EUR	Exposure proportional to relevance	Logarithmic	<i>✓</i>	~	
RUR	Discounted gain proportional to relevance	Logarithmic	1	1	Distribu and
IAA	Exposure proportional to predicted relevance	Geometric	Predicted	×	sequen metric
EEL, EER	Exposure matches ideal (from relevance)	Cascade, RBP	1	×	
EED	Exposure well-distributed	Cascade, RBP	×	×	
PAIR	Pairwise preference accurately modeled across groups	×	1	×	

ution nce

15

Challenges in implementation

Missing Relevance Information

Missing Group Label

Extreme Imbalance

Parameter Setting

Comparative Analysis

- Algorithms did not show significant differences on most metrics
- No clear agreement

Sensitivity Analysis

Weighting Strategy

Parameter Changes

Algorithms did not show much difference (except EEL)

EE* and AWRF showed unstable response towards parameter change.

Takeaways

- > **PreF** Δ and **RUR**: suffer from the missing data (sparsity) problem
- RUR: sensitive to imbalance retrieval across groups
- FAIR, DP, EUR, and RUR: not allowing non-binary protected attributes limits the applicability of those metrics in real data
- > **PreF∆, AWRF, FAIR, DP, EED:** do not consider relevance information
- > IAA: exhibits a comparatively robust nature
- > **DP** and **EUR:** show consistency in response to various parameter changes.
- > **EE*** and **AWRF:** significantly sensitive towards the change of parameters

Defining metrics in unified framework

Implement the metrics in same experimental setup

• Metrics are surprisingly similar

• Missing data, missing relevance information, ranked list size are crucial/delicate factors in implementing metrics.

Sensitivity Analysis

- Metrics differ in their sensitivity towards external factors.
- High sensitivity towards design choices add complexity in the usability of metrics

Thank You