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Bias

e Difficult to define
e Domain dependent

e Systematic and unfair discrimination against certain individual or group entities by denying
opportunity and assigning unfair outcomes

e Group (Sensitive Attributes) and Individual Fairness
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Fairness Positioning

Geography
Age Race
Gender Economic
status
{ ' ‘ Sensitive Attributes
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Fair Ranking Metrics

PreFA

(Yang et. al; SSDBM ‘17): AWRF

(Sapienzynski et. al; WWW'19)

EEL, EED, EER

Diaz et.al; CIKM'20) T

(Zehlike et.al,;; CIKM'17)

IAA

(Biega et. al; SIGIR'18) DP. EUR. RUR
] ’

(Singh et.al; KDD'18)



Several Fair
Ranking Metrics
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No Comparative and
Comprehensive
Analysis



Why is the Problem a Problem?

Implementation in
Real-world IAS dataset

Differences among the
Metrics

Finding suitable Metrics
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Research Questions

RQ1. What are the conceptual differences among the fair ranking metrics?

RQ2. What is needed to apply these metrics to real IAS?

RQ3. What are the design decisions and parameters involved, and how sensitive
are the resulting metrics to those decisions?

RQ4. What are the empirical differences in how these metrics assess the relative
fairness of different recommendation algorithms or retrieval runs?



Research Tasks

Implementing

Conceptual Fair Ranking
Analysis of 1k
Fair Ranking Metrics in
' Real-World
Metrics

IAS Datasets

Sensitivity
Analysis

16



03 bo (D ¢> €D ba

attention

|

Metrics Design Decomposition

Fairness Goal

What does it mean to be fair?



Fairness Goal

B Relevance
‘ ! I Exposure/Attention
el im
o §
1 £ PreFA, FAIR, AWRF, DP, EE & ' ‘
! > IAA, EUR, RUR, EEL, EER
ltem position should not be :
affected by membership - Exposure/.attentlon should b
g ! proportional to relevance
q:‘ ! Q ‘
e g !-
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Metrics Design Decomposition

Fairness Goal Browsing
Model

What does it mean to be fair? How to measure position weight?

attention

|
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Browsing Models

Parameters

visiting probability Patience visiting probability
exponentially Parameter depends on
decreases wit relevance of
position visited items

Stopping
visiting prob.ability Probability visiting prok.>ability
exponentially logarithmically
decreases with decreases with
position position
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attention

03 bo (D ¢ €O fa
1 |

|

Metrics Design Decomposition

Fairness Goal Browsing
Model

What does it mean to be fair? How to measure position weight?

Target Exposure

Compare system exposure with what?

21



Target Exposure

Population estimator

o From full ranking

o Configured
Ideal exposure based on relevance
Estimated utility (Predicted relevance)
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Metrics Design Decomposition

Fairness Goal Browsing
Model
What does it mean to be fair? How to measure position weight?
! 5
2 Target Exposure Relevance
-
S}
Compare system exposure with what? How to incorporate relevance?
Group
! Membership

Does it allow multinomial and
soft group association?



Group Membership

Multinomial Protected Attributes

Non-Binary Groups, such as gender

Soft Group Association

Partial or mixed group membership such as race

Pinney, C,, Raj, A., Hanna, A., & Ekstrand, M. D. (2023)
Much Ado About Gender: Current Practices and Future Recommendations for
Appropriate Gender-Aware Information Access.
To appear in CHIIR 2023 proceedings.
https://arxiv.org/abs/2301.04780
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Summary [

of Fair
Ranking
Metrics

Metric(s) Goal Weighting | Relevance | Binomi
al?
PreFd Each prefix representative of whole ranking X X Dep ond
FAIR Each prefix matches target distribution X X v
Weighted representation matches population Geometric X X
DP Exposure equal across groups Logarithmic X 4
EUR Exposure proportional to relevance Logarithmic v v
RUR Discounted gain proportional to relevance Logarithmic v v
IAA Exposure proportional to predicted relevance Geometric Predicted X
EEL, EER Exposure matches ideal (from relevance) Cascade, v X
Geom
EED Exposure well-distributed Cascade, ) ¢ ) ¢
Geom

25




Statistical Parity

[ Exposure/Attention AW R F

Group A

Group B

‘ ! I (Sapienzynski et. al, WWW'19)

! I Expected cumulative exposure(Group B x position weight) >=p

Target distribution is the group distribution in entire ranked list (true demographics)

d - :

30- -

no relevance information
geometric attention decay
non-binary group
membership

uses a target distribution
to compare

g l-
é ! PreFA (Yang et. al, SSDBM'17) and FAIR (Zehlike et. al, CIKM'17) differ in

ﬁ ! measuring position weight and allowing multinomial groups.
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|

Sequences of Ranking

Statistical Priority

DP, EED

|

Equal Opportunity

=)

IAA, EUR, RUR, EER, EEL
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B Relevance

I Exposure/Attention

1!_

\.

2=
S
sl

Equal Opportunity

EE*

(Diaz et. al, CIKM'20)

EEL(Expected Exposure Loss): ||target-system]|2

EER (Expected Exposure Relevance): Exposure-relevance distribution ®  stochastic ranking
e rbp & cascade

attention decay
e non-binary group
membership

IAA (Biega et. al, SIGIR'18) differs in weighting strategy, group membership, and relevance

EUR, RUR (Singh et. al, SIGKDD'18) differs in weighting strategy and group membership
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Task 1 Findings

Task 1: Conceptual Analysis Fair Ranking Metrics

® Metrics are conceptually similar with common components like relevance, browsing model,
aggregation, target exposure
Metrics differs in their design choices and fairness assumption

® Metrics with same goal can have different design choices

29



Implementing the Metrics

GoodReads Bookdata FairTREC 2020 — Dataset

_ _ Sensitive
SOC|o—econom|c status Of

Author Gender author country Attributes

CF (implicit feedback) Participants provided ——  Algorithms

https://fair-trec.github.io/
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Challenges in Implementation

|IAA, EE*, DP, EUR, RUR
AWREF, IAA, DP, EUR,

RUR, EE*
e ™
Parameter Setting
All the metrics
- J
. - 4 I PreFA, FAIR, IAA, DP,
By EUR, RUR ‘
- ‘ - e  PreFA and RUR: suffer 3 s 4
from missing data e S sl B
(sparsity) problem Soft Group Association
e  Reformulated Non-binary groups
ratio-based metric to
J smoothed log ratio 31
Extreme Imbalance \_ )




Task 2 Findings

Task 2: Implementing Fair Ranking Metrics in Real-World Datasets

e Missing data, missing relevance information, ranked list size are crucial/delicate factors in
implementing metrics.
e Metrics with similar fairness goals differ in their ease of implementations
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Sensitivity Analysis

Ranked-list Weighting Parameter
size Strategy Settings
e No effect on metrics for FairTREC e Default parameters e Almost all metrics showed sensitivity
e Ratio-based metrics and FAIR e EEL and logRUR e logRUR is extremely sensitive
showed sensitivity showed high sensitivity
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Task 3 Findings

Task 3: Sensitivity Analysis

e Metrics differ in their sensitivity towards external factors.
e High sensitivity towards design choices add complexity in the usability of metrics
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Key Findings

N
Defining metrics in unified ® Metrics are surprisingly similar
framework )
(
Implement the metrics in same e Missing data, missing relevance information, ranked list size are
. crucial/delicate factors in implementing metrics.
experimental setup
. J
4 )
Sensitivity Analysis e Metrics differ in their sensitivity towards external factors.

. \ d
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Single-list metrics
FAIR, AWRF

Demographic Parity in
Sequence
DP, EED

Equal Opportunity in
Sequence
EUR, RUR, IAA, EER, EEL

Recommendations

Allow multinomial Allow soft group
protected association
attributes

AWRF AWRF
EED EED
EER, EEL EER, EEL

Sensitivity towards
design choices

AWRF

EED

EER, EEL, IAA
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Research Directions

Simulation study to understand the impact of crucial factors in metric implementation.
Incorporating various browsing models

Missing label

Missing or sparse relevance

Ambiguous or multiple group association

Robust, explainable, and efficient metric design
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